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Fields

We begin by defining what a field actually is.

| Definition 0.1 (Field) — A region of space where every point has an assigned value.

This assigned value is simply some number associated with each point in the field. It could be:
1. A scalar e.g. height, energy.
2. A vector e.g. force, flow.
3. A tensor e.g. general relativity.

In the context of physics, this value is often the force applied to some physical quantity.

Definition 0.2 (Uniform Field) — The direction and strength of the field is constant throughout
the considered region of space.

Definition 0.3 (Equipotentials) — Lines of constant potential.

For spherically symmetric mass distributions, equipotentials are concentric circles.

0.1 Gravitational Fields

We use the concept of a gravitational field to attempt to answer questions such as
« how do masses in empty space interact?
e how does one mass know that the other is there?
o what goes on in the space between them?

Two masses do not interact directly with one another but instead with the gravitational field
established by the other.

The mass of an object, say m;, creates a gravitational field around it. When mass ms is placed in
this field, it experiences a force of attraction towards m,. Of course, my also has a gravitational
field that exerts a force on m;. The two forces are equal in magnitude but opposite in direction;
they are a Newton’s Third Law pair of forces.

50.1.1 Newton’s Law of Gravitation

Fvery particle in the universe attracts every other particle with a force that is directly
proportional to the product of the two masses and inversely proportional to the square of
the distance between them.

Newton’s law of gravitation states that the magnitude of the attractive force between two point
particles of mass m; and my separated by a distance r is
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Formula 0.4 (Newton's Law of Gravitation)

Gmime
Fo=—35—
r

where G is the fundamental gravitational constant (= 6.67 x 10~'* Nm?kg ?).

Newton’s law of gravitation applies equally well to spherically symmetric mass distributions such as
planets.

90.1.2 Gravitational Field Strength

The gravitational field g is defined as

Definition 0.5 (Gravitational Field Strength) — The gravitational force per unit mass on a
small ‘test mass’ placed in the field.

Formula 0.6 (Gravitational Field)

g =

3=

Essentially, we imagine releasing the test particle of mass m into the gravitational field and measuring
the force acting on it at a particular point in space.’

The gravitational field strength is the magnitude of the gravitational field g. We know

- GMm . _, F
F=—F+—7,8=—
r m
GM |
=>g=—F51
T
where 7 is a unit vector in the radial direction. So, gravitational field strength g = | €|, which

gives

Formula 0.7 (Gravitational Field Strength)

Example 0.8 Show that the density of the Earth is given by

_ 39
B 47T7”EG

PE

!The test mass should be sufficiently small so that it does not disturb the body whose gravitational field strength we are
measuring.
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Solution. We know that p = % and g = C;ﬂé!
2
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.. = X =
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O

The path that a ‘test mass’ follows in a gravitational field is called a field line. For a spherical mass
distribution the field lines are directed towards the centre of the sphere creating a radial field.

In a uniform field, both the direction and density of field lines are constant. For small changes in
height close to the surface, the Earth’s gravitational field is approximately uniform.

0.1.3 Gravitational Potential and GPE

Definition 0.9 (Gravitational Potential Energy) — The work done in moving a mass from infinity
to a point in a gravitational field.

Definition 0.10 (Graviational Potential) — The work done per unit mass in moving a mass
from infinity to a point in a gravitational field.

Remark 0.11 Unfortunately, those are just the typical, hand-wavy definitions required for
A-Level. Below, I present a more mathematically rigorous argument.

The definition of potential energy U is U(X) = — ;g F - dx.

_GMm

r

This leads itself to the gravitational potential also which is simply the potential energy per unit
mass of the ‘test mass’.

Formula 0.12 (Gravitational Potential Energy)

Formula 0.13 (Gravitational Potential)
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Example 0.14 Show that the expression for AU reduces to AU = mgAy for small changes in

height.
Solution.
AU =U(r+y)—U(r)
=—GMm ( L 1)
r+y r

_ GM 1

o 1+2

_GM 4 _GM 1

- " 1+%) iz Y L=
But, % — 0, so the bracketed expression tends to 1, hence AU = mgAy for small y. O

Close to the Earth’s surface, the work done by the gravitational field W, is given by
yf
Wy =] (-mg)dy = —mgly
Note that positive y is upwards, and the weight mg acts downwards hence the negative sign.
We call the gravitational potential energy U where we know U = mgAy. Thus, the work done by

gravity is W, = —AU.

50.1.4 Escape Velocity

The escape ‘velocity’ is the initial speed required to go from a point in a gravitational field to infinity
with a residual velocity of zero.
By the conservation of energy, inital KE + initial PE = final KE + final PE.

I, GMm
Emve + <_

We can rearrange this for the escape velocity ve.

[12G M
Ve =
,

Example 0.16 Calculate the escape velocity at the surface of the Earth.

):o+o
"

Formula 0.15 (Escape Velocity)

Solution. We use the facts that ¢ = 9.81 Nkg ' and Ry = 6400 km.

GM GM
= :> _ =
72 T

g gr

L Ve =4/29Rp =~ 11.2 kms!
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90.1.5 Kepler's Laws

Kepler’s Laws are a set of three laws describing the orbits of planets around the sun. The three laws
state:

1. The law of orbits: All planets move in elliptical® orbits, with the sun at one focus.

2. The law of areas: A line segment joining a planet and the sun sweeps out equal areas during
equal time intervals.

3. The law of periods: The square of the period of any planet is proportional to the cube of the
semimajor axis of its orbit (which can be approximated as the radius of the approximate
circle).

Remark 0.17 While Kepler’s first law refers to elliptical orbits, these orbits are not very
highly elliptical so it is often safe to approximate orbits of planets around the sun as circular.

For greater clarity with the second law, the following illustration is helpful. The green areas are all
equal and swept out in equal amounts of time.

Sun

Planet

We can prove Kepler’s third law as follows:

For a planet of mass m moving in a circular orbit of radius r about a star of mass M, by Newton’s

law of gravitation we know
_ GmM

r2
but also since this a circular orbit, we have a centripetal force at play.

Fy

F. = mw?r

As the gravitational force acts toward the centre of the circular orbit, F, = F..

GmM
mQ = mw?r = GM = w*?
r
But, recall that w = QT”, which gives us
472 , Ar?
GM:F’I" =T :GMT'

Hence, T? o 73.

2 An ellipse is defined by the locus (or set of points) for which the sum of its distances from the two points called foci add up
to a constant value.
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50.2 Electric Fields
0.2.1 The Electric Field

It is first worth defining what this abstract concept of charge actually is.

Definition 0.18 (Charge) — Some conserved quantity in the universe that just so happens to
exert, forces on itself.

From a mathematical standpoint, we may see charge defined as

T
q:/ I-dt
0

The electric field (E) is defined as

Definition 0.19 (Electric Field) — The electrostatic force per unit positive test charge applied
to said charge.

It is a vector field and multiple electric fields add through vector addition.

Formula 0.20 (Electric Field)
E =

= =y

where E is the electric field (NC™1), q is the charge inside the field (C) and ( f) is the force applied
to the charge (V).

The electric field bears many similarities to the gravitational field. For instance E is a lot like g, as
the former is force per unit charge and the latter force per unit mass.

50.2.2 Drawing Electric Fields
Here are the laws to obey when drawing electric fields
1. Field lines never cross
Field lines go from positive to negative
In electrostatics, when reaching a conductor, the field lines meet perpendicular to the surface.

A set charge will have a proportional number of ‘field lines’ (flux).

S N

The density of the field lines is indicative of the field strength.

Example 0.21 A positively charged conductive sphere is placed above an earthed conductive
surface. Draw the field lines.
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Note that if there is a field inside a conductor, then there is a current.

50.2.3 Coulomb’s Law

The force exerted on two point charges is proportional to the product of the two charges
and inversely proportional to the square of their separation.

For two charges ¢; and g3 a distance r away from each other, the electrical force is given by

Formula 0.22 (Coulomb'’s Law)
F= q142

4drregr?

where & is the permittivity of free space (= 8.85 x 1072 C*N~'m~2).

Remark 0.23 Sometimes we may replace ﬁ with a k for convenience.

The electrical forces exerted on both charges are equal and in opposite directions, hence they form a
Newton’s Third Law pair, much like gravitational forces.

If g1 and ¢, are both positive or both negative, F' is positive = repulsive.
If ¢; and ¢, are opposite charges, I’ is negative = attractive.
We can use Coulomb’s law to obtain a formula for the electric field strength, which is the magnitude

of the electric field (i.e £ = |E|) Using £ = %
Formula 0.24 (Electric Field Strength)
E _ Q

4drregr?

Example 0.25 Two charges of —5 nC and —2 nC are 0.1 m away from each other. Find the
distance from the —5 nC charge, where the electric field is zero.
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50.2.4 Electric Potential and EPE

to a point in an electric field.

charge from infinity to a point in an electric field.

Solution. Let x be the distance from the —5 nC where the electric field is zero. Then we have

Definition 0.26 (Electric Potential Energy) — The work done in moving a charge from infinity

Definition 0.27 (Electric Potential) — The work done per unit positive charge in moving a

Remark 0.28 Unfortunately, those are just the typical, hand-wavy definitions required for

A-Level. Below, I present a more mathematically rigorous argument.

—

The definition of potential energy U is U(X) = — f;é F.dx.

work done :—/Rf-d?
R Qq
N _/oo 4drreqr? dr
Qg [Rdr
e
Qg N
T 4re [_;]oo
_ Qg
dregR

Now, the electric potential is simply the potential energy per unit charge of the ‘test particle’.

Formula 0.29 (Electric Potential Energy)

Qq
FE =
dmegr
Formula 0.30 (Electric Potential)
Q
V=
dregr
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where electric potential V' has units of volts.
Electric potential is a scalar field associated with a charge ) at a distance r away.

An interesting corollary from the two previous formulas is that the electric field (E) can be defined
as the vector gradient of the potential field.

Corollary 0.31 R R
E=-VV

In a uniform electric field, the voltage increases linearly.

Formula 0.32 (Uniform Electric Field)
E—

14
d

I Remark 0.33 This formula is most common with two charged plates distance d apart.

Example 0.34 How fast would two deuterium nuclei be flying apart if they were originally
107! m apart (and initially stationary)?

50.2.5 E-fields using vectors

We can express electric force F and electric field B in vector form.

P Qe . Qg
= r= r
4drregr? dtegrs
B9 ;- 9 &

4megr? 4regrs

90.2.6 Parallel Plates
We consider a question:

Given a large, uniformly charged plate, with surface charge density o, what is the voltage
at a point above the centre of the plate, a distance x away?

We have the following setup:

10
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F:m

T
-

The quantity of charge 6Q) at radius p from the centre of the plate will be equal to the area of the

thin ring® multiplied by surface charge density o.

g~ o-0A=0-2mp-dip

But, we want the voltage at a distance r away, or x away from the centre where the charge at this
point is ¢. We know that voltage is the total electric potential energy divided by the charge. Hence,

q-0Q
Z OUp = Z dmegr
= Z

2wop - 6Q)
dmegr

B Z ap-op
2e0v/2? + p?
Convert the sum to integral form for p from 0 up to the full radius of the plate pqz-

. o Pmazx p d
T 20 Jo rZEp? r

To evaluate this integral, we can use the substitution u = /2?2 + p? = i—z = 2p.

o [u=r+0he du o 2242,
2e0 Ju=x2 2\/6 2¢e9 z

— o [ 2 2 )
= — + —
280 ( z Pmaz €

Now, what if we place another oppositely charged plate on the other side of the point, with equal

charge density o, giving us the following setup.

3Note that we have used rings to sum the area of the plate to make the geometry and our calculations easier - it doesn’t

really make a difference.

11
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We can now find the voltage V' at a general position between these two parallel plates.
V=V(x)—-V(z—d

:éo/m—x—\/m—(x—d)?)

But, provided that p,,., is considerably larger than x and d, V22 + p? = \/p?> + (x — d)? = p.

g

Vv (d — 2z)

N 260
This equation states that the voltage between oppositely charged plates varies linearly with distance.

at x =0: V:%
atx:g: V=0
atx=d: V=-2

- 2e0

For the potential difference between two parallel plates AV, we have AV =V (0) — V(d) = 2¢

o’
but recalling that ¢ = %, where () is the charge of the plates and A is the area of the plates, we
obtain the following useful formula.

Formula 0.35 (Potential difference between parallel plates)

_ Qd

AV = ——
v ASO

A natural question to ask now is what about the electric field B between parallel plates? Recall
from 0.31 that E is just the gradient of voltage.

Oz
0
o %
=——| &= | (d—2
280 8_) ( x)
o —2 %
o\ o 0

12
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Formula 0.36 (Electric field strength of parallel plates)

o Q
E:—:—
g0 &0A

The B-field between parallel plates is constant in strength and uni-directional; a uniform field!
This is essentially a proof of 0.32.

0.2.7 Gauss’ Law

The total flux (number of electric field lines) through any closed surface is proportional
to the amount of charge enclosed within said surface.

Formula 0.37 (Gauss’ Law)

/E).dK:Qenc
€

Remark 0.38 dK is an area vector with direction normal to the surface. € is the electrical
permittivity, equal to gq in a vacuum.

Depending on the problem, we choose a ‘surface’ which makes calculation the most easy.

We can use Gauss’ Law to show the results for the electric field strength of a spherical or point
charge and parallel plates. I leave this as an excercise for the reader. Note that the electric fields
are uniform in these situations.

Example 0.39 Use Gauss’ Law to find the electric field strength a distance r from a charged
wire.

Solution.

Qenc —
€
We can model our surface with the geometry of a cylinder, with our (straight-line) wire within

this surface. Let’s give the wire length [ and we have the distance from the wire to the surface
boundary 7.

/E'dA:E'Atotal

Qene =F.27rl
€
Q
= F =
e 2mrl

But, since the total charge enclosed and the length of the wire are constants, we can make the
substitution that g = ), giving the nicer looking expression:

B A
e 27y

13



KN7811 (2019-2021) Fields

| O

14



